"Логические задачи" - это познавательно-развлекательный проект для непрокисших мозгов. Задачи на логику, нестандартное мышление. Не всегда самое очевидное решение - правильное. Но иногда всё оказывается проще, чем кажется на первый взгляд.

Задачи на логику и сообразительность




О сайте
Гостевая книга
ЧаВо

Пользователи
RSS

Поиск на сайте





запомнить меня
Зарегистрироваться


Задачи



Данетки


Текущие:

  «Геометрическая»
  Высказывание Ломоносова
  Наверное, не про яблоки
  Комерция
  Везде градусы
  Вагончик тронется, вагончик тронется..
  Спасибо медикам и католикам))
  Специальная купюра
  Студенческая смекалка
  Эллипс vs Круг
  Современные технологии. Немецкий стандарт.
  Спортивная
  философская
  Про газету
  печатная монета
  Купюра евро
  Древние изобретения
  Биометрические паспорта
  Новый глава
  В далеком созвездии тау Кита... 8)))
  Огородное
  Средневековое строительство
  Жестокое наказание
  Их нравы - 4
  Европейский стандарт

Разгаданные недавно:

  этот модный тандыр
  Из Что-Где-Когда
  Может ли такое быть?
  Что изображено?
  Да на тебе пахать надо!


Справочная



Признаки делимости
Площади фигур


Реклама






задача: Произведение факториалов



Сложность: сложныеКакой сомножитель нужно вычеркнуть из произведения 1!*2!*3!*4!*...*100!, чтобы оставшееся произведение стало квадратом некоторого натурального числа?



Ответ



50!

Решение задачи





Ваши ответы на задачу


ответов: 4

Сергей Юрич 2012-09-20 07:55:28 пишет:
Корень из сто ф. Делить на корень из 2
   Админ: не уловил.. как это можно вычеркнуть?

KoKos 2012-09-04 11:16:06 пишет:
А не... Ничего больше считать не надо. :))) Это я торможу - видно не проснулся еще. :))) Перепишем исходное произведение еще чуть-чуть. ;) (1!*3!*...*99!)^2*2*4*...*100 = (1!*3!*...*99!)^2*2^50*50! ;))) Итого (1!*3!*...*99!)^2*2^50 дают нам полный квадрат гарантированно, а 50! можно смело вычеркивать без дальнейших проверок и подсчетов. Впрочем, если надо, то легко убедиться, что 50! факториал не является полным квадратом и действительно нам мешает - он содержит 47 простых двоек. Остальное нас уже не интересует. ;)))
   Админ:

KoKos 2012-09-04 10:01:02 пишет:
Продолжим, но немного пока. :))) 2*4*...*100 таки не являются полным квадратом, к сожалению. Такое произведение содержит 97 (нечет) простых двоек. 50 четных чисел - это 50 вхождений двойки в первой степени. Плюс еще 25 вхождений за вторую степень (4,8,...,100). И т.д. То есть одну нечетную степень двойки надо обязательно выкидывать. Всего таких кандидатов 65. Кроме того, надо убедиться, что все оставшиеся простые делители (нечеты) при этом тоже будут строго в четных степенях... Возникает большой соблазн выкинуть само 2!, но тогда все равно прийдется считать степени всех простых делителей оставшегося 4*6*8*...*100. 8))) А потом еще, возможно, и простые делители соответствующего факториала - ибо его-то мы уже безболезненно не вычеркнем. XD Так что разве что вечерком сяду, попробую посчитать...
   Админ: интригуете

KoKos 2012-09-04 02:20:38 пишет:
Любопытная задачка... 8) Я правильно понимаю, - что "сомножителем" для вычеркивания следует считать один из полных факториалов, а не просто одно из чисел, присутствующее где-то внутри одного из факториалов? 8))) Для начала давайте поделим поделим сомножители-факториалы на "четные" и "нечетные". Естественнно, 3!=6 (чет), но аргументом факториала является 3 (нечет) поэтому будем считать его нечетным. Далее отметим, что все нечетные числа, содержащиеся уже внутри факториалов, входят в результирующее произведение четное число раз, начиная с соответствующего нечетного факториала (единица - сто раз, тройка - 98, пятерка - 96, семерка - 94, девятка - 92, и т.д.). Раскладывать девятку, как квадрат тройки пока не будем - ее и так четное количество, что в результирующем произведении даст полный квадрат все равно. То есть нечетные факториалы вычеркивать не особо хочется, они нам по предварительной прикидке очень даже подходят. Обратим внимание на четные... Четных же чисел внутри факториалов (не простых делителей) у нас в произведение входит всегда нечетное количество, - которое, если не разобъется каким-то образом на четное количество простых двоек, не позволит нам никак собрать полный квадрат. Кроме того, в четные факториалы будут входить и нечетные простые делители, - и даже без учета простых двоек, например, 95 вхождений шестерки (содержащей 95 - нечет - простых троек, соответственно) может нам сильно попортить жизнь... Давайте теперь попробуем переписать исходное произведение. 1!*2!*3!*4!*...*100! = 1!*(1!*2)*3!*(3!*4)*...*(99!*100) = (1!*3!*...*99!)^2*2*4*...*100 . Если нам удастся доказать, что 2*4*...*100 являются полным квадратом - то задача будет решена, вычеркивать надо 1! , который ни на что не влияет. ;))) Если не является, прийдется искать такое n, чтобы n! можно было вычеркнуть, или доказывать, что такого n не существует. Для чего прийдется считать скрупулезно четность степеней всех простых делителей в итоговом произведении (не забываем, что 6=3*2 и содержит нечетный простой делитель). Сорри, но это уже не сейчас... Подустал и выдохся. Постараюсь продолжить завтра, но и не обижусь, если кто перехватит инициативу. :)))
   Админ: так, так...

Добавьте комментарий:
Автор:

Комментарий:

Пожалуйста, введите символы с картинки:
(подтверждение не требуется для зарегистрированных пользователей)



 





Обсуждаем

  Задача Какой высоты стол:
Барсик Мяу : [скрыто]
Задача про животных:
не представился : [скрыто]
Задача задача об игроках:
K2 : [скрыто]
Задача Кот ученый и мышка в норках:
K2 : [скрыто]
Задача Ириски из кармана:
K2 : [решил задачу]
Задача Многопараллелепипедов:
K2 : [скрыто]
Задача Какой высоты стол:
K2 : [решил задачу]
Задача Кирпич на пружинке:
Вася : [скрыто]
ivana2000: А нельзя ли по подробней?
Данетка Биометрические паспорта:
Сергей : [задал вопрос] -[нет]
Задача про животных:
Барсик Мяу : [решил задачу]
Задача Какой высоты стол:
R-2 : [скрыто]
Админ: можно взять среднеквадратичное или золотое сечение.
R-2 : [скрыто]
Админ: слабоватое обоснование
Задача Три подозреваемых:
Виталий : [скрыто]
Задача Какой высоты стол:
Виталий : [скрыто]
Задача 123456789:
не представился : [скрыто]
Админ: задачи добавляем по ссылке "добавить задачу". Ладно, сам перенесу :)



Реклама



© 2009-201x Логические задачи